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The propagation of a shear surface wave (SSW) along the interface of  an elastic half-space liquid and micropolar half-space is 
considered. The phase velocity of  the wave and its attenuation constant are determined. It is shown that a SSW at the interface 
of a solid and a micropolar liquid propagates almost without dispersion, unlike a wave at the interface of a solid and a viscous 
Newtonian liquid in which the dispersion is noticeable at high frequencies. The attenuation of  the SSW is considerably weaker 
in the first case than the second. The attenuation constant decreases as the boundary viscosity increases. © 1999 Elsevier Science 
Ltd. All rights reserved. 

It is well known that there can be a slightly non-uniform attenuating shear wave at the interface of an 
elastic medium and a viscous liquid; its properties have been studied in some detail [1-3]. The features 
of the propagation of a SSW in the upper megahertz and gigahertz bands can be influenced by the 
microstructure of both the solid and the liquid. We will confine ourselves here to investigating the 
influence of the micropolarity of  the liquid on the SSW. 

We introduce an orthogonal Cartesian system of coordinates in which the xy plane coincides with 
the interface of the two media. The z axis is directed into the micropolar liquid. 

The wave process in an isotropic linearly-elastic half-space can be described by the equation [4] 

u, - c 2 grad div u + c~ 2 rot rot u = 0 (1) 

where u is the displacement vector, ct is the velocity of dilatation waves and cr is the velocity of shear 
waves. In a viscous micropolar incompressible liquid the wave motion can be described in the linear 
approximation by the equations [5-7] 

V t =-VP+(V+Vr)AV+2VrrOtto 
Pl 

Ito t = 2v,.(rot V - 2to) + TAto + (O + 8)grad div to (2) 

div V = 0 

where V is the velocity vector, Of is the density of the liquid, p is the pressure, I is a scalar constant with 
the dimension of moment  of inertia of unit of mass, m is the microrotation vector, v is the coefficient 
of kinematic Newtonian shear viscosity and v,, O, 8, "/are the coefficients of moment viscosity. 

Using the representation for the microrotation vector m in terms of Lamb potentials 

to = VO + rot ~,  div ~ = 0 (3) 

assuming that the wave propagates along the x axis and the particles move along the y axis perpendicular 
to the propagation vector, we can reduce the initial vector equations (1) and (2) to four scalar equations 

u,, = C~A_L u (4) 

V t = (v + v~)A±V- 2v~A±~ (5) 

l~ t  = 2 v r ( V -  2~t)+ yA_L ~ (6) 

10, = -4vrO + (0 + ~, + 8)A±O, A± = a~ + a z (7) 
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Since all the quantities depend on only two space variables, we can use the notation A instead of A±. 
It is useful to replace Eqs (5) and (6) by equations with only one dependent variable 

L V :  0, L¥ = 0 (8) 

L = la, 2 - 4w,A + y(v + Vr)A 2 - (/(v + vr)+ y)a,A + 4vr3 , 

At the interface (z = 0), we have 

u, = V (9) 

p. ,c~u  z = p f ( v -  v , ) V ~  - 2v~pf(Ox - V~) (10) 

2(®x-Vz)+aVz = O, 2 ( O z - ~ F x ) - C t V x = O  (11) 

8AO + (7 + O)(O= + W~z) = O, (O + y)O= + 6~= - 7¥= = 0 (12) 

Here tx can take any value in the half-segment (01] and 0s is the density of the elastic medium. Relation 
(9) is the condition for continuity of the displacement velocities, (10) is the condition for continuity of 
the shear stresses, (11) is the condition for proportionality of the micro-rotation vector to the mean 
angular velocity of particles of the liquid medium and (12) is the condition for the moment stress to 
vanish. 

Taking the first equation of (1) into account, it is more convenient to write boundary condition (10) 
in the form 

psc~uz = pf(v - v r + VrtX)V ~ (13) 

It also makes sense to use (6) to convert the second boundary condition of (12) to the form 

(0 + y)(O= + W=) - hF, + 2vr(V - 2~) : 0 (14) 

We shall seek a solution of system (4)-(7) in the form of a travelling non-uniform wave (c.c. denotes 
the complex conjugate of the expression that precedes it) 

u = O e x p ( - i 0 ) t + i k x + k z ) + e . c . ,  ~,2 = k  2 _ 0 )2  
2 

Cx 

2 ^ 

V = ~ ,V j  e x p ( - i 0 ) t + i k x - ~ , j z ) + c . c .  
j = l  

(15) 
2 

= ~ j  e x p ( - i 0 ) t + i k x  -~, /z)+c.c .  
j : l  

4V r - i0)1 
0 = O e x p ( - i 0 ) t + i k x + ~ , 3 z ) + c . e . ,  ~,23 = k 2 + %,+8+~ 

4 ( im 1(v + v,)+ ~ 4w_~ "~z2. I 
EJ+ ~,-2k2+ y(v + v,) y(v + v , ) )  ~+k4+ ?(v + v~) x 

x{-10) 2-4ivrt0-i[ l (v+vr)+Y]0)k 2 +4Wrk2}=0, j = l , 2  (16) 
,., ^ 

where k is the complex wave number and Re ~, > 0, Re 3. 3 > 0, Re lj > 0 (j = 1, 2), l>j, ~j, 0 are constants. 
Here and below the symbol m is used only to denote the angular frequency. 

Substituting the harmonic travelling wave (17) into the boundary conditions (9), (11), (13), (14) and 
the first condition of (12), we obtain 

-i0)f) : VI + % 

2(/I,6 + x,O, + x2~2)- ~,v, + ~2%) = o (17) 
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[ )1 (q ^ 2 - ~ 3 6 + i k ( ~ ,  +~/2 -io~k +V2)=O 

ik~3(T + O)6 + [k2(Y + O)+ 4Vr-  i¢01](~l + V2)-  2V,(~ + }'2)= 0 

Note that the most common condition used for the microrotation vector is that it should equal zero 
at a solid wall, which corresponds to c~ in formulae (11) taking the value zero. However, when (z = 0, 
analysis of boundary conditions (17) shows that there cannot be a SSW for any values of the parameters 
of the contacting elastic half-space and micropolar liquid, which contradicts what we know from acoustics. 

From the condition for the five linear homogeneous equations (17) to be compatible, cumbersome 
but standard calculations yield a dispersion equation for the SSW. The following method is simpler. 
Substituting the expression for, Wa + ~2 from the fourth equation of (17) into the last equation, we 
obtain a relation between V1, V 2 and O. From this and the equation obtained from the fifth condition 
(17) with thehelp of the third condition, we eliminate ®. The result is an equation which contains 
only V1 and V2 

2(E 2 - k2)(T + O + 8)[k2(T + O)+ 4v,(1 - OU')- icol](q + V2)+ 

+~,3(4Vr --/CO/)( T + O)(~q ~ + ~,2 I~2) = 0 (18) 

The first two conditions of (17) enable us to write one more equation in 1~1, ~'2 
psc2~.(q + V2)= i¢opfCv-v, + ovc,)(~.,q + ~,2V2) (19) 

Equations (18) and (19) are solvable for I~ + 1~2, ~.~1~ + X2/~'2 under a condition which, using the 
expression for ~.3 from (15), we convert to the form 

[ 4v~( l -~ - ' )  ital ] (20) psc2~.=--io~/(V--Vr+OWr)~,-31 k2+ T+ 0 T+O 

Note that the dispersion equation for a surface shear wave is much simpler in the case of a viscous 
Newtonian liquid 

p s c 2 ~ , - i o p / ~ k  2 - ~ ) = 0  

The first term (k 2 = 0(o~2/c2)) and the third term in square brackets on the right-hand side of Eq. 
(20) are much smaller than the second term for waves in the megahertz band, and hence can be neglected. 
This is also 2 true of the terms inthe expression for ~.3. Neglecting small terms and squaring both sides 
of Eq. (20), it can be solved for ~ .  After simple calculations, we obtain expressions for the phase velocity 
and attenuation constant of the SSR. 

We introduce the dimensionless terms 

__ P f  V r ( V - - V  r "~" (XrVr) 2 
r - ~ ,  g= , h = l + . - -  

p~ c2(T + O) T + 0 

V O  - C2I  V r 
~'2=--~, f = ' - ~ - ,  e = - -  

cz V 

Then the expressions for the phase velocity c and the attenuation constant of the SSW will take the form 

= + 2r2g( )hO- 

(21) 
= I/2 v-lc~'22r2h(oU 2 - 1)e-lgf 

It follows from the first formula of (21) that SSW propagates practically without dispersion at the 
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interface of a solid and a micropolar liquid in the megahertz band, unlike the wave at the interface 
of a solid and a viscous Newtonian liquid, where the dispersion is more noticeable at those 
frequencies 

C n =c~(l+l/~8~-~2(4-r2)r 2) 

where cn is the phase velocity of the SSW at the interface of the elastic half-space and a viscous Newtonian 
liquid. According to published data, the dimensionless term g is of the order of ~ 10-11(1 + a) 2, and 
so the difference between the phase velocity of a SSW and that of a shear wave c~ is exceptionally small. 
The difference between the two is much greater for a viscous Newtonian liquid. The micropolar 
properties reduce the depth to which the exponentially attenuating wave field of the SSW penetrates 
the liquid and at the same time lessen the difference between the non-uniform wave field of the SSW 
in an elastic body and a plane shear wave. Comparing the expression for the attenuation constant 13 in 
(21) and that for 13 n of SSW along the interface of an ordinary viscous fluid and an elastic body 

~n --" I/2 V-Icx r2~2 

we see that the SSW attenuates considerably more weakly in the case of a moment liquid. 
The coefficient tx, associated with the boundary viscosity of a micropolar fluid,'l" has a large effect on 

the velocity of the SSW (although this is small compared with c~), especially in cases when the rotational 
viscosity vr is comparable in value with the ordinary coefficient of kinematic viscosity v. The relation 
between c/c~- 1 and the parameter ct is shown in Fig. I when g takes the values gl = 0.5 x 10-11(1 + 

2 10 2 11 2 ct),  g2 = 0.4 x 10- (0.9 + 0.1ct), g3 = 0.8 x 10- (1 + 0 .2a) ,  corresponding to values of e equal to 
0.5; 0.1; 0.02, while the other parameters are unchanged: r = 0.13,f = 2.3 x 10 3, h = 1. The frequency 
dependence of the attenuation constant vfS/c~ for the same parameter values and g = gl is also shown. 
It is interesting to note that the attenuation constant decreases as the boundary viscosity increases, that 
is, as ct increases. 

For waves in the gigahertz band, the first term in square brackets on the right-hand side of Eq. (20) 
becomes much greater than the second. In that case the expressions for the phase velocity and attenua- 
tion constant take the form 

c= cx[l + ~ 2 r 2 ( 1 - ( 1 - 1 X ) e )  2 ] 
(22) 

-- ~ v-lc<~2r2g(OOfe -I (2 - h -I ) 

Thus, for a SSW at the interface of an elastic body and a micropolar liquid the frequency curves of 
the phase velocity and attenuation constant are quadratic as in the case of a Newtonian liquid. It is 
worth mentioning that formulae (22) may also hold at lower frequencies i f a  takes a value close to unity. 
Whether this can actually happen is still unclear. 

Indirect experimental results suggest that the microrotational moment of inertia I is no greater than 
10 -16 m 2. This might not be a completely reliable result. There could be micropolar liquids with a large 
constant I of the order of 10 -12 m 2. For such "strongly microinertial" liquids, the expressions for the 
phase velocity and attenuation constant of the SSW would take the form 

c = cx[l - Y8 .2  f2e-2r2 g2 (~)h 2 ] 

~- 1~2 v-lcx~-]2r2g(tx)fe-lh 
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